Giant splenic artery mycotic aneurysm presenting with massive hematemesis

JEYAMANI R, SHYAMKUMAR NK,*, KUMAR NARAYANAN, ** SUBHASH HS, **
BIJJU GEORGE, GEORGE KURIAN

Departments of Gastrointestinal Sciences,
* Radiodiagnosis and ** Medicine,
Christian Medical College, Vellore 632 004, Tamil Nadu

We report a 40-year-old man with rheumatic heart disease who presented with abdominal pain for three weeks and hematemesis for 24 hours. CT scan showed a large splenic artery aneurysm without evidence of pancreatitis. Mycotic aneurysm due to infective endocarditis was considered and confirmed by echocardiogram, which showed aortic and mitral valve regurgitation and vegetations. He was managed successfully with coil embolization of the aneurysm and antibiotics. [Indian J Gastroenterol 2003;22:147-148]

Key words: Infective endocarditis

Mycotic aneurysms are uncommon complications of infective endocarditis (IE), occurring in 2%-10% of cases. They result from septic embolization of vegetations to the arterial vasorum or the intraluminal space with subsequent spread of infection through the intima and outward through the vessel wall. They occur frequently in intracranial arteries, followed by visceral arteries and arteries of the upper and lower extremities.1

A 40-year-old man, non-addict, presented with low-grade fever for three months, episodes of severe left upper quadrant abdominal pain and back pain for three weeks, and two episodes of massive hematemesis over 24 hours. He was earlier diagnosed to have rheumatic heart disease, but had discontinued anti-rheumatic prophylaxis. He was given a course of antibiotics after negative blood cultures for his fever, without any avail. On examination, he was pale and there was a pulsatile mass in the epigastric and left hypochondrial region, around 7 cm in diameter.

CT scan done earlier had shown a large splenic artery aneurysm. Emergency angiogram showed an aneurysm from the splenic artery measuring 4 cm in size and approximately 4 cm from the origin of the splenic artery (Fig). The distal splenic artery was re-formed through collaterals from the superior mesenteric, left gastric and hepatic arteries with no direct continuity beyond the aneurysm. The splenic artery proximal to the aneurysm was emboleted using coils and no filling of the aneurysm was seen on check angiogram.

The next day gastroscopy showed no fresh bleed, and CT angiogram showed a 10-cm aneurysm without any contrast filling. CT also showed splenic infarcts, but no evidence of perisplenic inflammatory disease. The disparity in the size of the aneurysm between CT and angiogram was due to a thrombus partially filling the aneurysm.

Transesophageal and transthoracic echocardiogram revealed vegetations in the aortic valve with aortic and mitral regurgitation, confirming the diagnosis of IE. Though his blood cultures were negative, he became afebrile on antibiotics within three weeks and hematemesis did not recur. On the basis of thromboembolic phenomena and absence of pancreatitis, a diagnosis of mycotic aneurysm was made.

Splanic artery aneurysms are the most common visceral artery aneurysms, accounting for 60% of cases.

Fig. Selective angiogram of splenic artery showing proximal splenic artery aneurysm (arrow), and no continuity beyond aneurysm. Partial filling of hepatic artery noted due to reflux
The causes are arterial fibrodysplasia, multiple pregnancies, penetrating trauma, septic emboli, and periarterial inflammatory diseases like chronic pancreatitis. Less than 10% are caused by infective endocarditis. The importance lies in their potential for rupture or erosion into an adjacent vascus, leading to life-threatening hemorrhage.

Development of mycotic aneurysm in patients with IE has been associated with high mortality, with surgery as the only option in the past. Recently, endovascular treatment has been established as a safe and feasible alternative to surgery, and is the choice of treatment in management of visceral artery aneurysms irrespective of etiology and location. Tihansky et al. reported successful transcatheter embolization of multiple mycotic splanic artery aneurysms. There are only six published case reports of mycotic aneurysm of splanic artery, of which only one has been managed with transcatheter embolization.

References

Correspondence to: Dr Jayamani. Fax: (416) 233 2055. E-mail: pati@emvegalore.ac.in
Received January 23, 2003. Accepted February 16, 2003

Superior mesenteric artery aneurysm presenting with epigastric pain and raised platelet count
R C RAKSHIT
Department of General Medicine, Blackpool Victoria Hospital, Whinney Heys Road, Blackpool, UK

A 90-year-old man admitted to our hospital for recuperation after heart failure was found to have raised platelet count and a normocytic anemia. He then developed an acute abdomen and died. Post-mortem examination revealed ruptured superior mesenteric artery aneurysm. Reactive thrombocytosis and anemia were probably the only indication of bleeding. [Indian J Gastroenterol 2003;22:148-149]

Key words: Thrombocytosis

Superior mesenteric artery aneurysm with hemorrhage is a rare but fatal cause of acute abdomen. They consist of less than 10% of all visceral aneurysms. The commonest cause is mycotic. Presentations vary from the asymptomatic to catastrophic hemorrhage.

A 90-year-old man was transferred to a district general hospital for recuperation following heart failure. He had a past history of myocardial infarction, atrial fibrillation, congestive heart failure, epilepsy and colonic polyps.

On initial investigations he was found to have normocytic anemia with hemoglobin 9.8 g/dL, MCV 98, urea 14 mmol/L, creatinine 161 μmol/L and ESR 120. He had low serum iron content with raised platelet count of 760,000/mm³. He had increased gamma globulin fraction on serum electrophoresis and weak Bence Jones protein in urine. Multiple myeloma was ruled out by normal bone marrow examination.

Ultrasoundography revealed a simple right renal cyst. Echocardiogram revealed moderately impaired left ventricular function but no evidence of vegetation. A few days after admission he complained of post-prandial epigastric pain, but abdominal examination was normal. Considering the raised platelet count and past history of colonic polyps, but no evidence of infective or inflammatory process, gastroscopy and colonoscopy were requested to rule out gastrointestinal bleeding.

He became acutely ill with acute abdomen about 2 weeks after admission while waiting for the investigations. On examination he was tachycardic, hypotensive, pale and sweaty. Examination revealed a distended abdomen with guarding and rigidity and absent bowel sounds. Hernial orifices were normal. An initial diagnosis of perforated viscus was made though an erect chest X-ray revealed no free gas under the diaphragm.

Hemoglobin dropped from 11 g/dL to 7 g/dL overnight. A diagnosis of intra-abdominal bleeding was made and he was transfused, but in view of his age and poor prognosis he was treated conservatively. He died in a few hours.

Post-mortem examination revealed a large hemorrhagic mass in the mesentery of size 8 cm x 5 cm x 4 cm. A large amount of partially clotted blood was present in the abdominal cavity. Histological examination of the mass showed ruptured superior mesenteric artery aneurysm.

The incidence of superior mesenteric artery aneurysms is approximately 1 in 12,000 in multiple necropsy series. They are difficult to detect when the patient is asymptomatic. By the time they bleed and present as acute abdomen it is sometimes too late.

Causes include mycotic (30%-60%), atherosclerosis (20%), connective tissue disease, congenital fibromuscular dysplasia, cystic medial necrosis, trauma and idiopathic. Mycotic aneurysms are related to intravenous drug abuse or subacute bacterial endocarditis and are usually caused by non-hemolytic streptococci.

Clinical presentations may include abdominal pain, palpable abdominal mass, audible bruit, cardiac murmur with fever, weight loss, or acute abdomen with evidence of intra-abdominal bleeding. Complications include rupture, thrombosis, dissection with occlusion, or superior mesenteric artery-to-portal vein fistula. Diagnosis is based on clinical suspicion and imaging techniques including Doppler ultrasonography, CT scan and angiography (with or without CT or MR guidance).